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The typical fluctuation of the net electric charge Q contained in a subregion A 
of an infinitely extended equilibrium Coulomb system is expected to grow only 
as x/S, where S is the surface area of A. For some cases it has been previously 
shown that Q/x/S has a Gaussian distribution as ]AI --* or. Here we study the 
probability law for larger charge fluctuations (large-deviation problem). We dis- 
cuss the case when both ]AI and Q are large, but now with Q of an order larger 
than .~/'S. For a given value of Q, the dominant microscopic configurations are 
assumed to be those associated with the formation of a double electrical layer 
along the surface of A. The probability law for Q is then determined by the free 
energy of the double electrical layer. In the case of a one-component plasma, 
this free energy can be computed, for large enough Q, by macroscopic 
electrostatics. There are solvable two-dimensional models for which exact 
microscopic calculations can be done, providing more complete results in these 
cases. A variety of behaviors of the probability law are exhibited. 

KEY WORDS: Coulomb systems; charge fluctuations; large deviations; exact 
results. 

1. I N T R O D U C T I O N  

C h a r g e  f luc tua t ions  in e q u i l i b r i u m  C o u l o m b  sys tems (p lasma,  elec- 

trolyte, . . . )  a re  k n o w n  to be " a b n o r m a l " .  (1'2) S o m e  t ime  ago,  M a r t i n  and  

Yalc in  (3) c o n s i d e r e d  the  f l uc tua t i ons  of  the  ne t  e lectr ic  cha rge  QA c o n t a i n e d  

in s o m e  s m o o t h  d o m a i n  A of  an  inf ini te ly  e x t e n d e d  e q u i l i b r i u m  classical  

C o u l o m b  system. T h e y  s h o w e d  tha t  the  m e a n  s q u a r e  cha rge  ( Q 2  A)  g rows  

I Laboratoire de Physique Th6orique et Hautes l~nergies, Universit6 de Paris-Sud, 91405 
Orsay, France (Laboratoire Associ6 au Centre National de la Recherche Scientifique). 

2 Departments of Mathematics and Physics, Rutgers University, New Brunswick, New Jersey 
08903. 

773 

0022-4715/93/0800-0773507.00/0 �9 1993 Plenum Publishing Corporation 



774 Jancovici e t  al. 

only as the surface area SA (not the volume) of A and, under some further 

assumptions, that Q A / ~ A  has a Gaussian distribution as IAI ~ ~ .  The 
variance was expressed in terms of the first moment of the charge-charge 
correlation function s(r); for a three-dimensional system, 

73 = lim ( Q ] ) -  1 
IAL ~ ~ S A 4 

d3r rs(r) (1.1) 

The corresponding formula for two dimensions is 

1 
f dzr rs(r) (1.2) 

Incidentally, (1.1) can be rewritten as 

1 I s(k) 
7 3 = ~ 2  d3k k 4 

in terms of the experimentally accessible (4) charge structure factor 

s(k) = (2zt) 3 f d3k exp(ik, r) s(r) 

Later Lebowitz (5) showed, under the same assumptions as in ref. 3, 
that, if we consider a cubical lattice LZ d, i.e., we divide space into cubes 
(squares) of size L a with centers on the lattice, then the normalized charge 
fluctuations in each cell, {qj}, q j= Q/L  (a- u/z, become, in the limit L-~ o% 
jointly Gaussian with covariance matrix b, bij = 7d[5 o -  (1/2d) 6;.j_+ 1]. This 
shows that any deviation from neutrality in cell i is compensated for in the 
2d neighboring cells. 

The aim of the present paper is to study the probability law for 
fluctuations of QA larger than those of order X~A" We want to investigate 
the asymptotic behavior of the probability of QA when both A and IQAI 
become large, but now in such a way that Q A / ~ A  goes to infinity. The 
results provide an example of large-deviation behavior which is different 
(more suppressed) than for systems with short-range interactions. In fact, 
as we shall see, the surface area S plays here a role similar to the volume 
in "normal" system fluctuations. 

While ordinary Coulomb systems are made up of at least two charged 
components, we shall mainly consider the mathematically simpler one- 
component plasma (OCP or Jellium). This frequently used model system 
consists of charged particles of one sign embedded in a uniform back- 
ground of the opposite charge. 



Charge Fluctuations in Coulomb Systems 775 

The Gibbs canonical distribution of such a d-dimensional system 
(d= 2, 3) containing N particles of charge e in a ball (disk) A R of radius 
R, [rj] ~< R, with uniform background density -pe,  is 

Prob(r~ ..... rN) = exp[--~Hu(r~,... ,  ru; R)]/ZN(fl; R) (1.3) 

where p is the inverse temperature, 
N 

mN=e 2 F, tri--rjl-l+~eZP Z r~, d=3 (1.4) 
i ~ j  i = l  

N 

HN = - e 2  E ln(Jr~-rj[/L)+�89 ~, r~, d = 2  (1.5) 
i~ - j  i = 1  

and ZN is a normalization factor. 
The OCP has a well-defined thermodynamic limit, (6) R ~ 0% N ~  o% 

for neutral systems, i.e., when the particle density NR/(4/3)7rR 3 (NR/rcR 2) 
approaches p. In this system charge fluctuations are the same as particle 
fluctuations and so the comparison with particle fluctuations in "normal" 
particle systems is direct. In fact the two-dimensional OCP at pe2=2  
provides an example of a solvable system with explicitly computable 
n-particle correlations which have strong clustering properties, in which 
our analysis can be carried out fully. 

To find the probability distribution of charge fluctuations in a 
Coulomb system we shall, for simplicity, consider only spherical (circular) 
domains A R. Let us begin with an overall neutral system confined to 
a region AR,, R'>R. Let FR.R,(Q) be the free energy of the system 
constrained by the requirement that the charge in A R be Q. Then, in the 
unconstrained system, the probability that the charge in A R is Q is 

PR, R,(Q) = CR, R' exp{ --fl[FR, R'(Q) -- FR, R,(0)] } (1.6) 

where Ce, R, is a normalization constant. It is reasonable to assume that the 
limit 

6FR(Q)= lim [FR, R,(Q)--FR, e,(O)] 
R ' ~  oo 

exists, in which case we can define a probability 

PR(Q)= CRe P6FR(e~ (1.7) 

Thus, our problem is to evaluate 6FR(Q) in the further limit R---, oo, 
IQ[ ~ oo. More precisely we set Q = ~ R  ~, where c~ is constant and ~, is a 
random variable, and wish to study the probability P(d.~; R) as R ~  oc. 
The case e =  1, d =  3 (c~= 1/2, d = 2 )  was studied by Martin and Yalcin. (3) 
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We are interested in larger deviations, therefore we consider the range 
~>~1, d = 3  (e>>. l/2, d = 2 ) .  

Some information about 6FR(Q) can be ~ obtained from physical con- 
siderations, based in part on macroscopic electrostatics. Furthermore, for 
the two-dimensional OCP at fie 2-- 2, explicit microscopic calculations can 
be performed. This will let us check that the microscopic results confirm 
the macroscopic ones. 

Section 2 is about the one-component plasma, in d = 2 and 3. We also 
consider there, in some detail, the exactly solvable case d =  2, /?e2= 2. 
Section 3 is about the two-component plasma. The main results are 
summarized in Section 4. 

2. ONE-COMPONENT PLASMA 

2.1. Two-Dimensional Case. General Picture 

Since the two-dimensional one-component plasma happens to be exactly 
solvable(7 9) at the temperature such that fie2= 2, we first study the two- 
dimensional case. We consider a circular subregion of radius R within an 
infinite system. For  the charge Q in that disk we set Q = ~=R =, and we want 
to study the probability distribution of ~ in the limit R -* oe. Macroscopic 
electrostatics of conductors implies that, for a given value of Q, the domi- 
nant configurations are such that Q is concentrated in a layer on the inner 
side of the boundary of the disk, while a charge - Q accumulates in a layer 
on the outer side. Thus, using the language of electrochemists, we can regard 
the free energy difference 6FR(Q) as the free energy of a double electrical 
layer formed at the interface between the inside and the outside of the disk, 
as if the surface was impermeable to the particles. 

In a one-component plasma the net charge density is bounded on one 
side: the bound is reached when the particle density is zero, in which case 
the net charge density has its minimum value, i.e., the background charge 
density - e p .  Thus, for the large values of both R and [Q] that we are 
interested in, two regimes have to be distinguished. 

Microscopic Regime. 1/2~<~<1, i.e., [Q] does not grow faster 
than the perimeter of the disk. The thickness of the double electrical layer 
(Fig. 1) does not increase as R--* oe, and curvature effects can be neglected. 
In terms of f ( e a ) ,  the free energy per unit length of a rectilinear double 
electrical layer with a line charge density ea = Q/2~zR = ~,R ~- ~/2zc on one 
side (and - c a  on the other side), the relevant free energy becomes 

6FR (Q) ~ 2 ~ R f ( Q / 2 ~ R )  = 2~Rf(~  ~ R ~ - '/2z~) (2.1) 
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Fig. 1. The double electrical layer in the microscopic regime (one-component or two- 
component plasma). 

For  ~ = 1, the layer free energy density f is some more or less 
complicated function of Ct/2zc, and so is the probability P(~I; R). But, for 

< 1, as R ~ ~ ,  a ~ 0 and f can be replaced by the first nonzero term of 
its power expansion, i.e., 

f ,,~ B(e~r) 2 (2.2) 

where B is a constant ( f  must vanish and be minimum at a = 0). In this 
limit, one recovers for (1.7) a Gaussian probability law, 

P ( ~ ;  R) ,,~ exp[ -/3B(2rc) -1 R 2~- I~] (2.3) 

and by identification with the variance (1.2) calculated by Martin and 
Yalcin (3) one infers that 

(2f iB)-1= lim <Q~> 1 fdZrrs(r  ) (2.4) 
R~ ~ 2~R n 

where s(r) is the charge-charge correlation function in the infinite 
Coulomb system. It is also possible to rederive (2.4) directly by adapting 
the approach of ref. 3 to the present plane interface geometry. 

Macroscopic Regime. ~ > 1 ,  i.e., Jal grows faster than the 
perimeter of the disk. Since the charge density has the lower bound - e p ,  
on the negative side of the interface the thickness of the electrical layer 
becomes macroscopic (Fig. 2). Then, it is reasonable to assume that 
6FR(Q) should have as its leading term the macroscopic electrostatic 
energy of one of the circular arrangements shown in Fig. 2 (this statement 

822/72/3-4-24 
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Fig. 2. The double electrical layer in the macroscopic regime (one-component plasma). 
Case (a) is when there is an excess of negative background inside the sphere or disk (Q <0). 
Case (b) is when there is an excess of positive particles inside the sphere or disk (Q > 0). 

is a generalization of  what  has been proved in the simpler case of one body  
carrying a surface charge density~6'l~ 

The calculation of  the electrostatic energy is straightforward. The 
electrical field E does not  vanish only, in the shaded area shown in Fig. 2; 
in this area, E is determined by div E = -2nep with the boundary  condi- 
tion E(R)  = (Q/R) ur, where ur is the radial unit vector. Therefore 

and the relevant free energy is 

1 
6F,(Q) = -~n f E2(r) dzr 

 Q~ 4Qo 8 

where Qo = ~RZep. 
The macroscopic  regime e > 1 can be further subdivided. 

1. If 1 < c~ < 2, Q/Qo = ~ ( g e o )  -1 R ~-2 -~ 0 as R --* oo, (2.5) behaves 
like ]QI3/12Qo, and (1.7) becomes 

( = e x p [ - ~ ( 1 2 n e p )  -~ 21~et[ 3 ] (2.6) P ( ~  ; R) ~ exp 12Qo J 
R3~ 
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In this regime, the thickness of the double electrical layer is of order 
]QI/R = ~ R  ~-1= o(R), and curvature effects can still be neglected. Indeed, 
(2.6) can also be obtained from f (e~),  the free energy per unit length of a 
rectilinear double electrical layer, in the limit e~ --, 0% because in that limit 
the rectilinear double electrical layer becomes a charged line with a line 
charge density e jet] = [Ql/2rcR adjacent to a strip of bare background of 
width ]aI/P. One easily computes the corresponding electrostatic energy per 
unit length (~/3)e 2 lal3/p, in agreement with the result obtained from (2.5) 
for ]Q[/Qo "-* O. 

2. If e = 2, the full expression (2.5), with Q/Qo = (rcep) -1 ~z, must be 
used in (1.7). 

The special case Q = -Q0,  i.e., ~z = -~ep,  corresponds to an empty 
hole (only the background and no particle within the disk). Then, from 
(2.5) and (l.7) one obtains 

P(~2 = -7cep; R) ~ exp(-flQao/8) = exp(-fle2rc2p2R4/8) (2.7) 

3. If ~ > 2  (this is possible only for Q > 0 ,  since Q has the lower 
bound -Qo) ,  (2.5) behaves like (1/4) Q2 ln(Q/Qo) (the dominant contribu- 
tion is the self-energy of the bare background), and 

~Q~ ~ ~ ) 

2.2. T w o - D i m e n s i o n a l  Case. Exact  Results 

The above considerations are supported by the exact microscopic 
results which can be obtained at the temperature such that/?e2= 2. Then, 
an exact expression forf(e~), the free energy per unit length of a rectilinear 
double electrical layer, has been obtained by Rosinberg and Blum/1~) They 
started with a circular interface and considered the large-radius limit. 
Therefore, their approach is a check that the large-R limit of 6FR(Q) is 
indeed of the form used in (2.1): 6FR(Q)~  2~Rf(Q/2rcR). 

Ref. 11 deals with the more general case of an interface between two 
one-component plasmas of different background densities. Here, there is 
only one background density p, i.e., the parameter m of ref. 11 must be 
taken as m = 1. Then, a slight rearrangement of the results in ref. 11 gives 
for the free energy density f ( ea )  the following integral representation 
in terms of an auxiliary parameter z: the function f ( ea )  is implicitly 
determined by the relations 

~ =  @-@ ( z - 1 ) f _ •  1 - q s ( t ) §  dt (2.9a) 
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and 

f = - e 2 In 2 
c~ 

+ f :  ln z[ l  +~b(t)]+ l - c b ( t ) }  
2z - ~r In z (2.9b) 

where ~b(t) is the error function 

q ~ ( t ) = - ~ f ~ e - ~ d u  

Therefore, (2.9), (2.1), and (1.7) give the probability law in the microscopic 
regime 1/2 ~< ~ <~ 1. 

For ~ = 1, ea = Q/2nR = ~1/2rc, and the full function f ( r  must be 
used in (2.1). 

The simpler case ~ < 1, which corresponds to the limit ea = Q/2nR = 
~ R e-  ~/2rc -~ 0, is obtained when z ~ 1. Then, by expansions in powers of 

z - t ,  
( p ~1/2 1 o~ pl/2 

o-~--\~--~j ( z - - 1 ) ~ 0  { 1 - [ q ~ ( t ) ] 2 } d t = -  2---~(z--I) 

and 
p ~ 1/2 e 2 

f ~ - - e 2 \ ~ - ~ l  (z- - t )2  ~ ; :  { 1 - [ ~ ( t ) ] 2 } d t - ~ a ( z - 1 )  

m 

Thus, 

p 1/2 e 2 
= - 4----~ ( z -  1 ) 2 - ~ - a ( z  - 1) 

2p 1/2 - 2pro 

and (1.7) becomes 

P ( ~ ;  R) ~ exp ( 

This is the Gaussian 
function is known, (8) 

0 2 

2 p u2 4 - ~  (2.10) 

law (2.3). Here, the charge-charge correlation 

rs(r) = -e2p2r exp( - zcpr 2) 

and it can be explicitly checked that the variance in (2.10), (Q2)/2ztR= 
pl/2/~rr = e2pU2/27t, is indeed in agreement with the general expression (1.2). 
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The macroscopic result (2.6), valid for 1 < e < 2, can also be obtained, 
when fle2=2, by a microscopic calculation using (2.9), in the limits 
ea ~ _+ oe. The limit ea -~ + oe is obtained when z --* 0 (for a plane interface, 
f is an even function of ~r, and therefore our results apply also to the case 
ca- -*-oo) .  The behavior of (2.9) as z ~ 0  can be obtained by setting 
z = e x p ( - z  2) and changing the integration variable t to u =  t/r. Then, as 

--, o% the integrand in (2.9a) goes to 2 for u E [0, 1] and to 0 for 
u r [0, 1 ], and 

, ~ ( p ) l / 2  1 / p \ l / 2  

After the same change of variable in (2.9b), as ~ ~ 0% the integrand of the 
first integral goes to zero while the integrand of the second integral goes to 
~'2(1 - -u  2) for 0 < u <  1 and to 0 for u >  1. One obtains 

( p ~ i / 2  ~ e 2 
flf  ~ - e 2 \ ' ~ J  fo C ( 1 - u 2 ) z d u + - f  aC 

e 2 
= -- e2 -~ T ff~c2 T 

Thus, as a ~ + ~ ,  
C2/'~ 

f , ' ~V la l3  (2.11) 

and one recovers (2.6). Therefore, in this case, we have checked that 
macroscopic electrostatics agrees with the here feasible microscopic 
calculation. 

Finally, the macroscopic result (2.7), valid for ~ = 2 in the special case 
Q = -Q0 ,  i.e., for r -rcep (bare background within the disk), can be 
checked by a microscopic calculation when fie2= 2. Indeed, the probability 
P R ( - Q o )  that the disk contains zero particles is related to the particle 
density p(R) just outside the disk by 

d in  PR 
- -  - -2rcRp(R) (2.12) 

dR 

[since the probability PR+aR is equal to the probability PR times the prob- 
ability 1 - p ( R )  2nR dR that there is no particle between R and R + dR]. 
For large R, the microscopic calculation described in the Appendix gives 

p(R) ~ �89 2 (2.13) 

and from (2.12) one recovers (2.7). 
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2.3. Three-Dimensional Case 

Many results for the two-dimensional one-component plasma could be 
obtained in Section 2.1 by arguments based on macroscopic electrostatics. 
These arguments can be easily adapted to the three-dimensional case. What 
will be missing in the three-dimensional case is an explicit expression for 
the free energy of the microscopic double electrical layer pictured on Fig. 1. 

We now Consider a spherical subregion of radius R within an infinite 
three-dimensional one-component plasma. For the charge Q in that sphere 
we set again Q = ~ R  ~ and we study the probability distribution of ~ in 
the limit R ~ oo. Again we expect the dominant configurations to be 
described by a double electrical layer. The different regimes are now as 
follows. 

Microscopic Regime. l~e~<2,  i.e., Ial does not grow faster 
than the surface of the sphere (Fig. 1). The analog of (2.1), in terms now 
of the surface charge density ea = Q/4~R 2, is 

6FR(Q) .,~ 4zcR2f(O/4rcR 2) = 41rR2f(r ~ 2/41r) (2.14) 

For ~=2,  the probability law P(r is governed by the function 
f(~2/4rc), for which no exact expression is known. However, for = < 2, the 
limiting form (2.2) of f is valid, and we obtain the Gaussian probability law 
analog of (2.3): 

P(r R) ~ exp[ - -  f l B ( 4 7 ~ )  - 1  R2~-2~] (2.15) 

with the variance (1.1). 

Macroscopic Regime. e > 2 ,  i.e., IQ[ grows faster than the 
surface of the sphere. The analog of (2.5), obtained by similar methods, is 

6 F R ( Q ) = l  f E2(r)d3r 

3 Q  1 Q 2  Q~5/3] 
Q~ Q ,Q, - 9 ( l + Q 0 J  J (2.16) 

where Qo = (4~rR3/3) ep. The subdivisions of the macroscopic regime now 
are as follows: 

1. If2<c~<3, Q/Qo=3(4zep)-lR~-3~ ~ 0 as R --* 0% (2.16) behaves 
like I QI3/18RQo, and (1.7)becomes 

P(r R) ~exp ( /~ 1013"] = i-8-~o/ exp[--l?(247~ep)-I R 3~-4 [~13] (2.17) 
k 
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In this regime, the curvature effects can be neglected [the thickness of the 
double electrical layer is of order IQI/R2= ~ R  ~-2 =o(R)] and (2.17) can 
also be obtained in a plane geometry: a charged plane adjacent to a slab 
of bare background. 

2. If ~ = 3, the full expression (2.16), with Q/Qo = 3(4~zep) 1 43, must 
be used in (t.7). 

In the special case Q = -Q0,  i.e., 43 = -4~ep/3, corresponding to an 
empty hole, one now obtains 

P(~3 = -472ep/3; R) ~ e x p [ -  fl(8~2/45) e2p2R 5 ] (2.18) 

3. If ~>3 ,  i.e., if Q/Qo ~ + ~ ,  (2.16) behaves like Q2/2R (the 
dominant contribution now is the self-energy of the sphere of radius R), 
and 

P(~;  R) , ,~exp(- f lQZ/ZR)=exp[-(1/Z)  f lR2~- l~]  (2.19) 

Thus, the very tail of the probability law is Gaussian again, as in the 
regime 1 ~< ~ < 2 described by (2.15), but now with another rate of decay. 

3. T W O - C O M P O N E N T  P L A S M A  

3.1. General  Picture 

Another Coulomb system of interest is the two-component plasma, 
made up of two species of particles of charges e and - e .  We may address 
the same problem: study the fluctuations of the charge Q inside a large 
spherical (circular) subregion A of radius R. However, for a classical 
two-component plasma to be well-behaved, the Coulomb interaction must 
be regularized in some way at short distance, and the probability law for 
the charge fluctuations, especially the large ones, is expected to depend on 
the detail of this regularization. 

In the three-dimensional case, in the regime 1 ~< ~ ~< 2, Eq. (2.14) and 
its limiting form (2.2) for ~ < 2 also apply to the two-component plasma. 
In the two-dimensional case, some microscopic results are available, as 
follows. 

3.2. T w o - D i m e n s i o n a l  Solvable Model  

Equation (2.1) also applies to a two-dimensional two-component 
plasma, with a Coulomb interaction +e21n(r/L) between the particles. 
This model also is exactly solvable ~tz) at the temperature such that fie 2 = 2, 
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and an exact expression for the free energy density f i n  (2.1) is available. 
Thus, we can describe the following regimes: 

= 1. In ref. 12, in terms of the bulk fugacity z and of the length 
scale L of the logarithmic interaction, a rescaled fugacity m = 2rcLz is 
defined (m is an inverse length and it turns out that rn- ~ is of the order of 
the correlation length). This parameter m controls the bulk density. The 
free energy density f ( e a )  of a double electrical layer with a linear charge 
density ea was computed (polarizable interface problem of ref. 12) in terms 
of an auxiliary parameter A~b, the potential difference across the interface 
(it happens tha t f remains  finite even in the limit of no short-distance cutoff 
in the Coulomb interaction, and this is the case which is considered here). 
The result was for the function f(etr)  the parametric representation 

f l f  = - ~- cosh --e - t + flea Aq~ 

m d~ 
a = ~- sinh --e 

(in the notation of ref. 12, our f is f2/A = 7 + e a  &b). Therefore, more 
explicitly, 

B f ( e a ) = - ~ -  1+  1 +2 t r s i nh -  - -  (3.1) 
m 

Using (3.1) in (2.1) and (1.7) gives the probability law when e =  1 for an 
arbitrary value of ea = Q/2rcR = ~ 1/2~. 

c~ < 1. In the limit o- ~ 0, i.e., when e < 1, one recovers the Gaussian 
law of Martin and Yalcin. (3) Indeed, (3.1) gives 

f ~  40"2 2 ( Q )  2 

 m=m 
and (1.7) becomes 

P ( { = ; R ) ~ e x p (  2/~ Q 2 )  R {=] (3.2) m 2--~-R = e x p [ - f l 0 z m ) - I  2~-1 2 

The charge-charge correlation function is exactly known, (12) 

(m>~ 2 
r s ( r ) = - - 2 e  2 \ ~ /  r { [ K o ( m r ) ] 2 + [ K l ( m r ) ]  2} 
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where Ko and K1 are modified Bessel functions, and it can be checked that 
the variance in (3.2) is in agreement with the general formula (1.2). 

c~ > 1. In the limit a -o  0% (3.1) has the behavior 

tSf"~2l~ ln81~ m 1) "~/?e2 [~ In ]a' (3.3) 

and (1.7) becomes 

P ( ~ ;  R)~exp(-fle IQI In ]Ql)~exp[-fleR ~ ]~l ln(R ~ J~/)] (3.4) 

These results (3.3) and (3.4) for the two-dimensional two-component 
plasma are to be compared with the results (2.11) and (2.6) for the two- 
dimensional one-component plasma. As Joj increases, the thickness of the 
double electrical layer decreases in the two-component case, while it 
increases in the one-component case. This is why the free energy is smaller 
in the two-component case. 

4. CONCLUSION 

We have estimated the probability PR(Q) that a charge fluctuation Q 
occurs in a large spherical (circular) subregion A of radius R in an infinite 
three-dimensional (two-dimensional) Coulomb system. 

It had been previously proven that when Q and x ~  (S is the surface 
area of A) both go to infinity with a fixed ratio q = Q/~,fS, PR(Q) becomes 
a Gaussian function of q, with a variance related to the first moment of the 
charge-charge correlation function. 

In the present paper, we have shown that the asymptotic behavior of 
PR(Q) is given by that same Gaussian as long as Q is of an order smaller 
than S. When Q is of the order of S, the asymptotic behavior of PR(Q) is 
determined by some function (not simple in general)f(Q/S), which is the 
free energy per unit area of a plane double electrical layer with surface 
charge densities _+ Q/S on each side of an interface impermeable to the 
particles. Finally, in the special case of a one-component plasma, when Q 
is of an order larger than S, the asymptotic behavior of PR(Q) can be 
explicitly computed by macroscopic electrostatics. 

The above results can be checked in the two-dimensional case by exact 
microscopic calculations which are feasible at a special value of the 
temperature. It is then possible to compute explicitly the two-dimensional 
analog of the free energy density f(Q/S), both for the one-component and 
the two-component plasmas. For the one-component plasma, some of the 
results obtained by macroscopic electrostatics have been checked by 
explicit microscopic calculations. 
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APPENDIX 

At the temperature such that/~e2= 2, we consider a two-dimensional 
one-component plasma subjected to the constraint that there is no particle 
within the disk of radius R centered at the origin. The background, 
however, fills the whole plane with a constant charge density - e p .  We 
want to compute the particle number density p(R) at a point infinitely 
close to the circle of radius R, on the external side. 

The method used in refs. 9 and 13 gives for the particle number density 
p(r), r >~ R, 

e - ~pr2r2n 
p ( ~ )  = 

,~=o ~R e ~PS2s2"2rcs ds 
(A.I) 

The integrals in (A. 1) can be expressed in terms of the incomplete gamma 
function 

F(n + 1, N)  = e- ' t "  dt (A.2) 

where N =  ~pR 2. That gives 

o o  (~pr2) " 
p(r) = pe -~p~2 

n=o F(n + 1, N)  

and in particular 

p ( R )  = p e  - N  F ( n  + 1, N)  
n = 0  

(A.3) 

For N>> 1, the dominant values of n in (A.3) will turn out to be such that 
N -  n = (9(x/-N). In that case, an asymptotic expression for F(n + 1, N)  can 
be obtained by rewriting (A.2) as 

F ( n +  I , N ) =  e-t+nlnt dt 

expanding the argument of the exponential around its maximum at t = n to 
second order in t - n ,  and performing the integral, with the result 

n - N  
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where ~ is the error  function. Using (A.4) in (A.3) gives 

)o(R)_~_jo e N~enlnN+n-nlnn(2)l/2 I (p(FI--N~ --1 
, , -o  ~nn 1 + \ ( 2 n ) , / 2 ] j  (a .5)  

Expanding the argument  of  the exponential  a round  its max imum at n = N 
to second order  in n -  N, discarding terms of  order  1 /x /~ ,  and replacing 
the sum on n by an integral on t = (n - N ) / ( 2 N )  m ,  one finds 

p ( R )  2 c ~ e - '2 2 

P = x / ~  j_(u/2) 1/2 dt 1 +~b(t~) In 1 - q ~ ( ( N / 2 )  1/2) 

N 1 
~ = ~  ~ p R  2 (a .6)  

This is (2.13). 
One may  note that  p ( R )  would be unchanged if the uniform back- 

g round  inside the disk was replaced by a linear charge density - e ~  along 
its circular boundary ,  with the same total charge, i.e., such that  
~2rrR = rcpR 2. Indeed, p ( R )  as given by (A.5) is the same as the density at 
contact  with a charged hard  wall carrying - e a ,  as computed  in ref. 9. 

A C K N O W L E D G M E N T S  

This work was under taken while B.J. and G.M. were visiting the 
Depar tment  of Mathematics  at Rutgers University. This work was 
supported by A F O S R  grant  92-J-0115. 

R E F E R E N C E S  

1. H. Van Bijeren and B. U. Felderhof, Mol. Phys. 38:1179 (1979). 
2. Ch. Gruber, Ch. Lugrin, and Ph. A. Martin, J. Stat. Phys. 22:193 (1980). 
3. Ph. A. Martin and T. Yalcin, J. Stat. Phys. 22:435 (1980). 
4. W. Kunz, P. Calmettes, G. Jannink, L. Belloni, T. Cartailler, and P. Turq, J. Chem. Phys. 

96:7034 (1992). 
5. J. L. Lebowitz, Phys. Rew A 27:1491 (1983). 
6. E. H. Lieb and H. Narnhofer, J. Stat. Phys. 12:291 (1975). 
7. A. Alastuey and B. Jancovici, J. Phys. (Paris) 42:1 (1981). 
8. B. Jancovici, Phys. Rev. Lett. 46:386 (1981). 
9. B. Jancovici, J. Phys. Lett. (Paris)42:L223 (1981). 

10. E. H. Lieb and J. L. Lebowitz, Adv. Math. 9:316 (1972). 
11. M. L. Rosinberg and L. Blum, J. Chem. Phys. 81:3700 (1984). 
12. F. Cornu and B. Jancovici, J. Chem. Phys. 90:2444 (1989). 
13. B. Jancovici, J. Stat. Phys. 28:43 (1982). 


